Mostrando entradas con la etiqueta gránulación. Mostrar todas las entradas

La granulación aerobia es una nueva tecnología aplicada a la depuración de aguas residuales. La biomasa, el conjunto de microorganismos que mediante su metabolismo degradan los contaminantes, crece en forma de agregados, en forma de gránulos. 
Se trata de una tecnología relativamente reciente y que aun continúa estudiándose y desarrollándose. 

Una tesis reciente profundiza en el conocimiento de los gránulos aerobios. La autora de la Universidad Técnica de Delf, tituló su tesis como : "Magic Granules", "gránulos mágicos". Y aunque no sirvan para hacer trucos de magia, realmente algunas de las propiedades de este tipo de biomasa son de lo más adecuadas para aplicar al tratamiento de aguas residuales:
Excelente sedimentabilidad
Menor producción de lodos
Resistencia a choques de carga y tóxicos
Presencia de diversos procesos biológicos simultáneos en el mismo gránulo. Zonas aerobias, anóxicas, anaerobias. 

Si estás más interesado en los gránulos aerobios esta entrada de la wikipedia puede aclararte un poquito que son y como se forman los gránulos aerobios. Y si estás mucho más interesado puedes descargarte la tesis de Winkler, M.K.H. y leer más sobre los "Magic Granules"

Winkler_Mari-Karoliina_Henriikka_PhD_thesis.pdf (30.9 MB)



Presentación Company Colsen International.

Una página que me encanta para encontrar información, imágenes, presentaciones muy didácticas es Slideshare.com, donde puedes encontrar multitud de presentaciones que otros usuarios comparten en Internet. Presentaciones de empresas, de congresos científicos, de profesores universitarios.

En esta presentación de la compañía Colsen International podemos encontrar información sobre los proyectos más recientes de esta empresa. Se tratan de investigaciones con las tecnologías más avanzadas en el campo ambiental.



Proyectos relacionados con biogás, digestores con recuperación de nutrientes, producción de energía en las plantas depuradoras. Reactores UASB. Eliminación de Fósforo mediante ANPHOS ® , mejora de la eliminación de Nitrógeno con NAS ®, reutilización de aguas residuales etc...

Aerobic Granulation. Video




EBCRC is optimising wastewater treatment systems by manipulating the microbial composition and properties of biosolids.The benefits of granulation include a dramatic increase in the throughput of a biosolid processing facility thus reducing the immediate need for plant managers to upgrade their assets. In addition, with the combined use of nutrient removal processes, it is envisaged that the entire footprint of a sludge processing plant will be greatly reduced.

Aerobic Granulation

Proyecto Novedar Consolider. Vídeo presentación.


Programa documental Ciencia Nosa. Presentación do proxecto Novedar Consolider. A depuradora do século XXI. Proxecto dirixido pola Escola Técnica Superior de Enxeñería da Universidade de Santiago de Compostela. USC.

Programa de la televisión de Galicia (TVG) Ciencia Nosa, con la presentación del proyecto Novedar Consolider. La depuradora del siglo XXI. Se trata de un proyecto dirigido por la Escuela Técnica Superior de Ingeniería de la Universidad de Santiago de Compostela y en la que participan varias universidades españolas y europeas:



Vídeo en Gallego

O tratamento biolóxico das augas residuais nas estacións depuradoras de augas residuais EDAR faise frecuentemente por medio da aplicación de sistemas baseados en lodos activos. Estes sistemas xeralmente requiren grandes superficies para a implantación das diversas unidades de tratamento e posterior separación da biomasa, debido á pobre sedimentabilidade dos lodos. Nos últimos anos desenroláronse novas tecnoloxías buscando melloras nestes sistemas. O emprego de lodos granulares aerobios é unha de elas.

Gránulos Aerobios

Gránulos Aerobios

Índice


Biomasa aerobia granular

Unha definición para distinguir entre un gránulo aerobio e un simple flóculo con boa sedimentabilidade foi proposta nos debates que tiveron lugar durante o “1er IWA-Workshop Aerobic Granular Sludge” en Munich (2004) e di literalmente:

“Os gránulos que forman un lodo granular aerobio son agregados de orixe microbiano que non coagulan en condicións de baixo estrés hidrodinámico e que sedimentan significativamente máis rápido que os flóculos de lodo activo.” (de Kreuk et al. 2005[1])"


Formación dos gránulos aerobios

Reactor SBR, con gránulos aerobios
Reactor SBR, con gránulos aerobios

A biomasa granular aerobia fórmase en reactores discontinuos secuenciales (Sequencing Batch Reactors, SBR) sen materiais de soporte. Estes sistemas cumpren os requerimentos necesarios para a formación dos gránulos, como son:

Periodos de saciedade-fame: Empréganse tempos cortos de alimentación para crear periodos de saciedade seguidos de periodos de fame (Beun et al. 1999[2]), caracterizados pola presencia ou ausencia de materia orgánica no medio líquido, respectivamente. Con esta estratexia de alimentación obtense a selección dos microorganismos adecuados para a formación dos gránulos. Cando a concentración de sustrato no medio líquido é alta, os organismos que forman gránulos poden almacenar materia orgánica en forma de [[poly-β-hidroxibutirato]] que poden consumir no periodo de fame, por tanto estes organismos estarán en vantaxe nesas condicións sobre os organismos filamentosos.
Tempos cortos de sedimentación: Esta presión selectiva hidráulica sobre os microorganismos permite reter a biomasa granular dentro do reactor, mentres a biomasa floculenta é lavada. (Qin et al. 2004[3])
Estrés hidrodinámico: As probas amosan que a aplicación de altas forzas de corte favorece a formación de gránulos aerobios e mellora as características físicas dos mesmos. Os gránulos soamente se forman con valores de esforzo cortante superiores a un valor umbral de 1,2 cm/s en términos de velocidade superficial ascensional do aire nun reactor SBR. Formanse gránulos máis regulares, más redondeados e máis compactos canto máis alta sexa a forza de corte hidrodinámica. (Tay et al., 2001[4] ).

Vantaxes

O densevolvemento de biomasa en forma de gránulos aerobios ten sido obxeto de estudio debido as suas aplicacións na eliminación de materia orgánica e compostos de nitróxeno e fósforo das auguas residuais. Os gránulos aerobios en reactores SBR presentan varias ventaxas comparados cos tratamentos convencionais de lodos activos:

Estabilidade e flexibilidade: Os sistemas SBR poden adaptarse a condicións fluctuantes, permitiendo evitar sobrecargas e tóxicos.
Excelente sedimentabilidade: Precisase un sedimentador secundario máis pequeno en comparación cos lodos activos convencionais, isto traducese en menores requerimentos de superficie para a construcción da estación de tratamento.
Boa retención da biomasa: Pódense alcanzar concentracións de biomasa máis altas dentro do reactor polo que se poden tratar maiores cargas de sustrato.
Presencia de zonas aerobias e anóxicas dentro dos gránulos que permiten realizar diferentes procesos biolóxicos no mesmo sistema. (Beun et al. 1999[5] )
O custe de operación dunha planta de tratamento de auguas residuais traballando con lodo aerobio en forma granular pode ser un 20% menor que traballando con lodos activos convencionais. O espacio requerido pode reducirse ata un 75%. (de Kreuk et al., 2004[6]).


Tratamento de augas residuais industriales

Nos traballos realizados con gránulos aerobios empregouse principalmente augas sintéticas. Estes traballos estaban enfocados principalmente no estudio da formación dos gránulos, na sua estabilidade e na eficiencia da eliminación de nutrintes baixoo diferentes condicións de operación, ademáis da sua potencialidade na eliminación de compostos tóxicos. O potencial desta tecnoloxía para o tratamento de augas residuais industriais estase a estudar. Algúns resultados destes estudios son:

  • Arrojo et al. (2004)[7] operaron dous reactores alimentados con augas industriais procedentes dun laboratorio de análisis de productos lácteos: DQO total: 1500-3000 mg/L; DQO soluble: 300-1500 mg/L; Nitróxeno total: 50-200 mg/L). Aplicaronse cargas orgánicas e de nitróxeno de 7 g DQO/(L·d) e 0,7 g N/(L·d) respectivamente, conseguíndose eficacias de eliminación do 80%.
  • Cassidy e Belia (2005)[8] obtiveron eficacias na eliminación da DQO e do fósforo de ata o 98%. Para o nitróxeno e os sólidos solubles volátiles (SSV) de ata o 97%. Empregouse un reactor granular alimentado con augas residuais dun matadeiro. (DQO total: 7685 mg/L; DQO soluble: 5163 mg/L; TKN: 1057 mg/L y SSV: 1520 mg/L). Para obter estas altas eficacias de eliminación operouse o reactor cun nivel de saturación de oxíxeno disolto (OD) do 40%, este é o valor óptimo determinado por Beun et al.(2001) para a eliminación de nitróxeno. Empregouse un periodo de alimentación anaerobio, oo que axuda a manter a estabilidade dos gránulos cando a concentración de OD está limitada.
  • Schwarzenbeck et al. (2004)[9] trataron augas residuais procedentes da industria cerveceira, cunha alta concentración de materia orgánica particulada (0,9 g SST/L). Atopouse que as partículas cun diámetro medio menor que 25-50 µm eliminabanse cunha eficacia do 80%, mentres que partículas con diámetros maiores que 50 µm soamente alcanzabanse eficacias do 40%. A capacidade dos gránulos aerobios de eliminar materia orgánica particulada débese á incorporación de estas partículas na matriz da biopelícula e á actividade metabólica da población de protozoos que cubren a superficie dos gránulos.
  • Inizan et al. (2005)[10] trataron augas industriais procedentes de industrias farmacéuticas e observaron que os sólidos suspendidos na auga de entrada do sistema non eran eliminados no reactor.
  • Tsuneda et al. (2006)[11] , trataron augas residuais procedentes dunha refinería de metais (1.0-1.5 g NH4+-N/L e ata 22 g/L de sulfato de sodio), obtendo unha eliminación de nitróxeno de 1,0 kg-N/m3·d cunha eficacia do 95% nun sistema contendo gránulos autotróficos.


Estudos en planta piloto

A tecnoloxía de granulación aerobia para a aplicación no tratamento de augas residuais está amplamente desenrolada a escala de laboratorio. A experiencia en sistemas a gran escala é máis limitada, pero varias institucións realizan esforzos para desenvolver esta tecnoloxía.

  • Dende 1999, DHV Water, a Delft University of technology (TUD), a STW (Dutch Foundation for Applied Technology) e a STOWA (Dutch Foundation for Applied Water Research) traballan conxuntamente no desenrolo da tecnoloxía de lodos granulares aerobios (Nereda™). Basrándose nos resultados obtidos, púxose en funcionamiento unha planta piloto en setembro de 2003 en Ede (Holanda). O corazón da instalación consiste en dous reactores biolóxicos paralelos de 6 m de alto e 0,6 m de diámetro, operando cun volume de 1,5 m3.
  • A apartires de lodo granular aerobio, pero empregando un sistema de retención para os gránulos, o IRSA (Istituto di Ricerca Sulle Acque, Italia) desenrolou un reactor granular con biofiltros operando por cargas secuenciales (SBBGR) cun volume de 3,1m3. Leváronse a cabo diferentes estudos nunha planta de tratamento de augas residuais ubicada en Italia.
  • A tecnoloxía ARGUS Aerobic Granules Upgrade System basease no emprego de gránulos aerobios preparados en laboratorio, que se engaden posteriormente no sistema principal. Os gránulos fórmanse en pequenos biorreactores chamados propagadores e enchen o 2 ou 3% do reactor principal. Este sistema emprégase nunha planta piloto con un volume de 2,7 m3localizada nunha industria farmacéutica en Hungría.
  • O Grupo de Enxeñería Ambiental e Bioprocesos da Universidade de Santiago de Compostela ten en marcha dende inicios do 2008 unha planta piloto de 100 L para a investigación da granulación aerobia.

Os estudios de viabilidade mostran que a tecnoloxía de lodos granulares aerobios pode ser moi prometedora (de Bruin et al., 2004[12] ). Baseándose no custe anual dun reactor granular (GSBR) con pre-tratamento e un GSBR con post-tratamento, estes sistemas son máis viabiles nun 6-16% Unha análise de sensibilidade amosa que a tecnoloxía de lodos granulares é menos sensible ó precio do chan, e máis sensible ós fluxos de augas pluviales. Debido á alta carga volumétrica que se pode tratar nun GSBR, a superficie necesaria é de sólo un 25% comparada cos sistemas tradicionais de referencia. Nembargantes, os sistemas GSBR soamente con tratamento primario non poden alcanzar os actuais estándares de depuración de augas residuais urbás, principalmente debido ó exceso de sólidos en suspensión no efluente que superas os valores límite de emisión. Estes sólidos proveñen do lavado da biomasa non fácilmente sedimentable.

Ver tamén

Links

  • USC Universidad de Santiago de Compostela. (Biogrup)
  • DHV Water -
  • TUDELF - Universidad de Delf
  • STW Dutch Foundation for Applied Technology
  • STOWA Dutch Foundation for Applied Water Research
  • NEREDA
  • IRSA Istituto di Ricerca Sulle Acque
  • ARGUS

granulación aerobia na wikipedia

La Universidad de Santiago idea las depuradoras del futuro

El proyecto acaba de ponerse en marcha bajo la coordinación de Juan Lema Rodicio que explica que el principal objetivo es minimizar los costes de las operaciones y el consumo de energía, reducir la producción de lodos y mejorar su gestión.


Las estaciones depuradoras de aguas residuales (EDAR) del futuro caminan hacia un cambio de concepto que convierta la depuración en una operación sostenible, con menos consumo, menos lodos y en la que el agua tratada se pueda reutilizar en agricultura. Con este propósito, la Universidade de Santiago de Compostela (USC) coordina un ambicioso proyecto, financiado por el programa Consolíder del Ministerio de Educación, que aúna esfuerzos de investigadores de la Escola Técnica Superior de Enxeñaría de la USC, de otros ocho grupos de investigación de España y dos de Holanda.

El proyecto, bautizado como Novedar (por nuevas estaciones depuradoras de aguas residuales) acaba de ponerse en marcha bajo la coordinación de Juan Lema Rodicio, que explica que el principal objetivo es minimizar los costes de las operaciones y el consumo de energía, reducir la producción de lodos y mejorar su gestión, así como hacer posible la reutilización del agua residual para su aprovechamiento. La idea es, por tanto, convertir las actuales estaciones depuradoras en centros de tratamiento y recuperación de agua.

Además de mejorar la calidad de las aguas, añade el profesor de la USC, también se intentará mejorar la de los lodos, liberándolos de contaminantes, tanto de los mayoritarios como de los microcontaminantes responsables, por ejemplo, del cambio de sexo de los animales acuáticos, a los que hasta ahora no se ha prestado la debida atención. La finalidad es de nuevo poder reutilizar los lodos en agricultura, una posibilidad que se está restringiendo debido precisamente a que se ha constatado que se pueden transmitir esos contaminantes a través de la tierra y las plantas.

En cualquier caso, los investigadores buscan también cómo reducir los lodos, que llegan a sumar en todo el país más de dos millones de toneladas al año y que acarrean un problema serio de almacenamiento. Y también recortar el consumo de energía de las estaciones depuradoras, que si se mantiene como hasta ahora, en los próximos años podría significar el 1% del consumo energético del país.

Cada grupo de investigación socio de Novedar, que cuenta con un presupuesto de 4,5 millones de euros, tiene un objetivo concreto, considerando las estaciones depuradoras como un conjunto. "La concepción de la nueva estación será flexible, con adaptación a los diferentes escenarios, dependiendo de su situación (en la costa o en el interior), sus dimensiones, el destino final del efluente...", apunta Juan Lema. La selección de las mejores técnicas se hará a partir de un análisis que contemplará tanto aspectos tecnológicos como ambientales, ecotoxicológicos y económicos .

Aerobic granulation

From Wikipedia, the free encyclopedia

The biological treatment of wastewater in the waste water treatment plant often accomplished by means of the application of conventional activated sludge systems. These systems generally require large surface areas for implantation of the treatment and biomass separation units due to the usually poor settling properties of the sludge. In recent years, new technologies are being developed to improve this system. The use of aerobic granular sludge is one of them.


Aerobic Granules
Aerobic Granules

Aerobic granular biomass

A definition to discern between an aerobic granule and a simple floc with relatively good settling properties came out from the discussions which took place at the “1st IWA-Workshop Aerobic Granular Sludge” in Munich (2004) and literally stated that:

“Granules making up aerobic granular activated sludge are to be understood as aggregates of microbial origin, which do not coagulate under reduced hydrodynamic shear, and which settle significantly faster than activated sludge flocs”(de Kreuk et al. 2005[1])"

Formation of aerobic granules

SBR Reactor, with aerobic granules
SBR Reactor, with aerobic granules

Granular sludge biomass is developed in Sequencing Batch Reactors (SBR) and without carrier materials. These systems fulfil most of the requirements for their formation as:

Feast - Famine regime: short feeding periods must be selected to create feast and famine periods (Beun et al. 1999[2]), characterized by the presence or absence of organic matter in the liquid media, respectively. With this feeding strategy the selection of the appropriate micro-organisms to form granules is achieved. When the substrate concentration in the bulk liquid is high, the granule-former organisms can storage the organic matter in form of poly-β-hydroxybutyrate to be consumed in the famine period, being in advantage with the filamentous organisms.
Short settling time: This hydraulic selection pressure on the microbial community allows retaining granular biomass inside the reactor while flocculent biomass is washed-out. (Qin et al. 2004[3])
Hydrodynamic shear force : Evidences show that the application of high shear forces favours the formation of aerobic granules and the physical granule integrity. It was found that aerobic granules could be formed only above a threshold shear force value in terms of superficial upflow air velocity above 1.2 cm/s in a column SBR, and more regular, rounder, and more compact aerobic granules were developed at high hydrodynamic shear forces (Tay et al., 2001[4]).

Advantages

The development of biomass in the form of aerobic granules is being recently under study for its application to the removal of organic matter, nitrogen and phosphorus compounds from wastewater. Aerobic granules in aerobic SBR present several advantages compared to conventional activated sludge process such as:

Stability and flexibility: the SBR system can be adapted to fluctuating conditions with the ability to withstand shock and toxic loadings
Excellent settling properties: a smaller secondary settler will be necessary, which means a lower surface requirement for the construction of the plant.
Good biomass retention: higher biomass concentrations inside the reactor can be achieved, and higher substrate loading rates can be treated.
Presence of aerobic and anoxic zones inside the granules to perform simultaneously different biological processes in the same system (Beun et al. 1999[5] )
The cost of running a wastewater treatment plant working with aerobic granular sludge can be reduced by at least 20% and space requirements can be reduced by as much as 75% (de Kreuk et al., 2004[6]).

Treatment of industrial wastewater

Synthetic wastewater was used in most of the works carried out with aerobic granules. These works were mainly focussed on the study of granules formation, stability and nutrient removal efficiencies under different operational conditions and their potential use to remove toxic compounds. The potential of this technology to treat industrial wastewater is under study, some of the results:

  • Arrojo et al. (2004)[7] operated two reactors that were fed with industrial wastewater produced in a laboratory for analysis of dairy products (Total COD : 1500-3000 mg/L; soluble COD: 300-1500 mg/L; total nitrogen: 50-200 mg/L). These authors applied organic and nitrogen loading rates up to 7 g COD/(L·d) and 0.7 g N/(L·d) obtaining removal efficiencies of 80%.
  • Cassidy and Belia (2005)[8] obtained removal efficiencies for COD and P of 98% and for N and VSS over 97% operating a granular reactor fed with slaughterhouse wastewater (Total COD: 7685 mg/L; soluble COD: 5163 mg/L; TKN: 1057 mg/L and VSS: 1520 mg/L). To obtain these high removal percentages, they operated the reactor at a DO saturation level of 40%, which is the optimal value predicted by Beun et al. (2001) for N removal, and with an anaerobic feeding period which helped to maintain the stability of the granules when the DO concentration was limited.
  • Schwarzenbeck et al. (2004)[9] treated malting wastewater which had a high content of particulate organic matter (0.9 g TSS/L). They found that particles with average diameters lower than 25-50 µm were removed at 80% efficiency, whereas particles bigger than 50 µm were only removed at 40% efficiency. These authors observed that the ability of aerobic granular sludge to remove particulate organic matter from the wastewaters was due to both incorporation into the biofilm matrix and metabolic activity of protozoa population covering the surface of the granules.
  • Inizan et al. (2005)[10] treated industrial wastewaters from pharmaceutical industry and observed that the suspended solids in the inlet wastewater were not removed in the reactor.
  • Tsuneda et al. (2006)[11] , when treating wastewater from metal-refinery process (1.0-1.5 g NH4+-N/L and up to 22 g/L of sodium sulphate), removed a nitrogen loading rate of 1.0 kg-N/m3·d with an efficiency of 95% in a system containing autotrophic granules.

Pilot research in aerobic granular sludge

Aerobic granulation technology for the application in wastewater treatment is widely developed at laboratory scales. The large-scale experience is still limited but different institutions are making efforts to improve this technology:

  • Since 1999 DHV Water, Delft University of technology (TUD), STW (Dutch Foundation for Applied Technology) and STOWA (Dutch Foundation for Applied Water Research) have been cooperating closely on the development of the aerobic granular sludge technology (Nereda™). Based on the results obtained, a pilot plant was started up in September 2003 in Ede (Netherlands). The heart of the installation consists of two parallel biological reactors with each a height and diameter of 6 m and 0.6 respectively and a volume of 1.5 m3.
  • From the basis of the aerobic granular sludge but using a contention system for the granules, a sequencing batch biofilter granular reactor (SBBGR) with a volume of 3.1m3 was developed by IRSA (Istituto di Ricerca Sulle Acque, Italy). Different studies were carried out in this plant treating sewage at a Italian wastewater treatment plant.
  • The use of aerobic granules prepared in laboratory, as a starter culture, before adding in main system, is the base of the technology ARGUS® (Aerobic Granules Upgrade System) developed by EcoEngineering Ltd.. The granules are cultivated on-site in small bioreactors called propagators and fill up only 2 to 3% of the main bioreactor or fermentor (digestor) capacity. This system is being used in a pilot plant with a volume of 2.7 m3 located in one Hungarian pharmaceutical industry.
  • The Group of Environmental Engineering and Bioprocesses from the University of Santiago de Compostela is currently operating a 100 L pilot plant reactor.

The feasibility study showed that the aerobic granular sludge technology seems very promising (de Bruin et al., 2004[12]. Based on total annual costs a GSBR (Granular sludge Sequencing Batch Reactors) with pre-treatment and a GSBR with post-treatment proves to be more attractive than the reference activated sludge alternatives (6-16%). A sensitivity analysis shows that the GSBR technology is less sensitive to land price and more sensitive to rain water flow. Because of the high allowable volumetric load the footprint of the GSBR variants is only 25% compared to the references. However, the GSBR with only primary treatment cannot meet the present effluent standards for municipal wastewater, mainly because of exceeding the suspended solids effluent standard caused by washout of not well settleable biomass.

References

  1. ^ de Kreuk M.K., McSwain B.S., Bathe S., Tay S.T.L., Schwarzenbeck and Wilderer P.A. (2005). Discussion outcomes. Ede. In: Aerobic Granular Sludge. Water and Environmental Management Series. IWA Publishing. Munich, pp.165-169)
  2. ^ Beun J.J., Hendriks A., Van Loosdrecht M.C.M., Morgenroth E., Wilderer P.A. and Heijnen J.J. (1999). Aerobic granulation in a sequencing batch reactor. Water Research, Vol. 33, No. 10, pp. 2283-2290.
  3. ^ Qin L. Liu Y. and Tay J-H (2004). Effect of settling time on aerobic granulation in sequencing batch reactor. Biochemical Engineering Journal, Vol. 21, No. 1, pp. 47-52.
  4. ^ Tay J.-H., Liu Q.-S. and Liu Y. (2001). The effects of shear force on the formation, structure and metabolism of aerobic granules. Applied Microbiology and Biotechnology, Vol. 57, Nos. 1-2, pp. 227-233.
  5. ^ Beun J.J., Hendriks A., Van Loosdrecht M.C.M., Morgenroth E., Wilderer P.A. and Heijnen J.J. (1999). Aerobic granulation in a sequencing batch reactor. Water Research, Vol. 33, No. 10, pp. 2283-2290.
  6. ^ de Kreuk, M.K., Bruin L.M.M. and van Loosdrecht M.C.M. (2004). Aerobic granular sludge: From idea to pilot plant.. In Wilderer, P.A. (Ed.), Granules 2004. IWA workshop Aerobic Granular Sludge, Technical University of Munich, 26-28 September 2004 (pp. 1-12). London: IWA.
  7. ^ Arrojo B., Mosquera-Corral A., Garrido J.M. and Méndez R. (2004) Aerobic granulation with industrial wastewater in sequencing batch reactors. Water Research, Vol. 38, Nos. 14-15, pp. 3389 – 3399
  8. ^ Cassidy D.P. and Belia E. (2005). Nitrogen and phosphorus removal from an abattoir wastewater in a SBR with aerobic granular sludge. Water Research, Vol. 39, No. 19, pp. 4817-4823.
  9. ^ Schwarzenbeck N., Erley R. and Wilderer P.A. (2004). Aerobic granular sludge in an SBR-system treating wastewater rich in particulate matter. Water Science and Technology, Vol. 49, Nos. 11-12, pp. 41-46.
  10. ^ Inizan M., Freval A., Cigana J. and Meinhold J. (2005). Aerobic granulation in a sequencing batch reactor (SBR) for industrial wastewater treatment. Water Science and Technology, Vol. 52, Nos. 10-11, pp. 335-343.
  11. ^ Tsuneda S., Ogiwara M., Ejiri Y. and Hirata A. (2006). High-rate nitrification using aerobic granular sludge. Water Science and Technology, 53 (3), 147-154.
  12. ^ de Bruin L.M.M., de Kreuk M.K., van der Roest H.F.R., Uijterlinde C. and van Loosdrecht M.C.M. (2004). Aerobic granular sludge technology: and alternative to activated sludge. Water Science and Technology, Vol. 49, Nos. 11-12, pp. 1–7)

External links

  • USC University of Santiago de Compostela. (Biogrup)
  • DHV Water -
  • TUDELF - Delf University
  • STW Dutch Foundation for Applied Technology
  • STOWA Dutch Foundation for Applied Water Research
  • NEREDA
  • IRSA Istituto di Ricerca Sulle Acque
  • ARGUS

Granulación aerobia

De Wikipedia, la enciclopedia libre

El tratamiento biológico de las aguas residuales en las estaciones depuradoras de aguas residuales (EDAR) a menudo se lleva a cabo por medio de la aplicación de sistemas basados en lodos activos. Estos sistemas generalmente requieren grandes superficies para la implantación de las diversas unidades de tratamiento y posterior separación de la biomasa, debido a la pobre sedimentabilidad de los lodos. En los últimos años se han desarrollado nuevas tecnologías buscando mejoras en estos sistemas. El uso de lodo granular aerobio es una de ellas.

Gránulos Aerobios
Gránulos Aerobios

Biomasa aerobia granular

Una definición para distinguir entre un gránulo aerobio y un simple flóculo con buena sedimentabilidad se propuso en los debates que tuvieron lugar durante el “1er IWA-Workshop Aerobic Granular Sludge” en Munich (2004) y dice literalmente:

“Los gránulos que forman un lodo granular aerobio son agregados de origen microbiano que no coagulan en condiciones de bajo estrés hidrodinámico y que sedimentan significativamente más rápido que los flóculos de lodo activo.” (de Kreuk et al. 2005[1])"


Formación de gránulos aerobios

Reactor SBR, con gránulos aerobios
Reactor SBR, con gránulos aerobios

La biomasa granular aerobia se forma en reactores secuenciales (Sequencing Batch Reactors) (SBR) sin materiales de soporte. Estos sistemas cumplen los requerimientos necesarios para la formación de los gránulos, como son:

Periodos de saciedad-hambruna: Se utilizan tiempos cortos de alimentación para crear periodos de saciedad seguidos de periodos de hambruna (Beun et al. 1999[2]), caracterizados por la presencia o ausencia de materia orgánica en el medio líquido respectivamente. Con esta estrategia de alimentación se logra la selección de los microorganismos adecuados para la formación de los gránulos. Cuando la concentración de sustrato en el medio líquido es alta, los organismos que forman gránulos pueden almacenar materia orgánica en forma de [[poly-β-hidroxibutirato]] que pueden consumir en el periodo de hambruna, con lo que estos organismos estarán en ventaja en esas condiciones sobre los organismos filamentosos.
Tiempos cortos de sedimentación: Esta presión selectiva hidráulica sobre los microorganismos permite retener la biomasa granular dentro del reactor, mientras la biomasa floculenta es lavada. (Qin et al. 2004[3])
Estrés hidrodinámico: Las pruebas muestran que la aplicación de altas fuerzas de corte favorece la formación de gránulos aerobios y mejora las características físicas de los mismos. Los gránulos sólo se forman con valores de esfuerzo cortante superiores a un valor umbral de 1,2 cm/s en términos de velocidad superficial ascensional del aire en un reactor SBR. Se forman gránulos más regulares, más redondeados y más compactos cuanto más alta sea la fuerza de corte hidrodinámica. (Tay et al., 2001[4]).

Ventajas

El desarrollo de biomasa en forma de gránulos aerobios ha sido objeto de estudio debido a sus aplicaciones en la eliminación de materia orgánica y compuestos de nitrógeno y fósforo de las aguas residuales. Los gránulos aerobios en reactores SBR presentan varias ventajas comparados con los tratamientos convencionales de lodos activos:

Estabilidad y flexibilidad: los sistemas SBR pueden adaptarse a condiciones fluctuantes, permitiendo evitar sobrecargas y tóxicos.
Excelente sedimentabilidad: Se necesita un sedimentador secundario más pequeño en comparación con los lodos activos convencionales, lo que se traduce en menores requerimientos de superficie para la construcción de la planta de tratamiento.
Buena retención de la biomasa: Se pueden alcanzar concentraciones de biomasa más altas dentro del reactor con lo que se pueden tratar mayores cargas de sustrato.
Presencia de zonas aerobias y anóxicas dentro de los gránulos que permiten realizar diferentes procesos biológicos en el mismo sistema. (Beun et al. 1999[5])
El coste de operación de una planta de tratamiento de aguas residuales trabajando con lodo aerobio en forma granular puede ser un 20% menor que trabajando con lodos activos convencionales. La reducción de espacio requerido puede reducirse hasta un 75%. (de Kreuk et al., 2004[6]).

Tratamiento de aguas residuales industriales

En los trabajos realizados con gránulos aerobios se ha utilizado principalmente aguas sintéticas. Estos trabajos estaban enfocados principalmente en el estudio de la formación de gránulos, de su estabilidad y de la eficiencia en la eliminación de nutrientes bajo diferentes condiciones operacionales, además de su potencial en la eliminación de compuestos tóxicos. El potencial de esta tecnología para el tratamiento de aguas residuales industriales se encuentra bajo estudio. Algunos resultados de estos estudios son:

  • Arrojo et al. (2004)[7] operaron dos reactores alimentados con aguas industriales procedentes de un laboratorio de análisis de productos lácteos: DQO total: 1500-3000 mg/L; DQO soluble: 300-1500 mg/L; Nitrógeno total: 50-200 mg/L). Se aplicaron cargas orgánicas y de nitrógeno de 7 g DQO/(L·d) y 0,7 g N/(L·d) respectivamente, obteniendo eficacias de eliminación del 80%.
  • Cassidy y Belia (2005)[8] obtuvieron eficacias en la eliminación de la DQO y del fósforo de hasta el 98%. Para el nitrógeno y los sólidos solubles volátiles (SSV) de hasta el 97%. Se utilizó un reactor granular alimentado con aguas residuales de matadero. (DQO total: 7685 mg/L; DQO soluble: 5163 mg/L; TKN: 1057 mg/L y SSV: 1520 mg/L). Para obtener estas altas eficacias de eliminación se operó el reactor con un nivel de saturación de oxígeno disuelto (OD) del 40%, el cual es el valor óptimo determinado por Beun et al.(2001) para la eliminación de nitrógeno. Se utilizó un periodo de alimentación anaerobio, lo que ayuda a mantener la estabilidad de los gránulos cuando la concentración de OD está limitada.
  • Schwarzenbeck et al. (2004)[9] trataron aguas residuales procedentes de la industria cervecera, con una alta concentración de materia orgánica particulada (0,9 g SST/L). Se encontró que las partículas con diámetro medio menor que 25-50 µm se eliminaban con una eficacia del 80%, mientras que partículas con diámetros mayores que 50 µm sólo se alcanzaban eficacias del 40%. La capacidad de los gránulos aerobios de eliminar materia orgánica particulada se debe a la incorporación de estas partículas en la matriz de la biopelícula y a la actividad metabólica de la población de protozoos que cubren la superficie de los gránulos.
  • Inizan et al. (2005)[10] trataron aguas industriales procedentes de industrias farmacéuticas y observaron que los sólidos suspendidos en el agua de entrada del sistema no eran eliminados en el reactor.
  • Tsuneda et al. (2006)[11] , trataron aguas residuales procedentes de una refinería de metales (1.0-1.5 g NH4+-N/L y hasta 22 g/L de sulfato de sodio), obteniendo una eliminación de nitrógeno de 1,0 kg-N/m3·d con una eficacia del 95% en un sistema conteniendo gránulos autotróficos.

Estudios en planta piloto

La tecnología de granulación aerobia para la aplicación en el tratamiento de aguas residuales está ampliamente desarrollada a escala de laboratorio. La experiencia en sistemas a gran escala es más limitada, pero varias instituciones realizan esfuerzos para desarrollar esta tecnología.

  • Desde 1999, DHV Water, la Delft University of technology (TUD), la STW (Dutch Foundation for Applied Technology) y la STOWA (Dutch Foundation for Applied Water Research) han trabajado conjuntamente en el desarrollo de la tecnología de lodos granulares aerobios (Nereda™). Basándose en los resultados obtenidos, se puso en funcionamiento una planta piloto en septiembre de 2003 en Ede (Holanda). El corazón de la instalación consiste en dos reactores biológicos paralelos de 6 m de alto y 0,6 m de diámetro, operando con un volumen de 1,5 m3.
  • Partiendo de lodo granular aerobio, pero usando un sistema de retención para los gránulos, el IRSA (Istituto di Ricerca Sulle Acque, Italia) desarrolló un reactor granular con biofiltros operando por cargas secuenciales (SBBGR) con un volumen de 3,1m3. Diferentes estudios fueron llevados a cabo en una planta de tratamiento de aguas residuales ubicada en Italia.
  • La tecnología ARGUS Aerobic Granules Upgrade System se basa en el empleo de gránulos aerobios preparados en laboratorio, que posteriormente se añaden en el sistema principal. Los gránulos se forman en pequeños biorreactores llamados propagadores y llenan el 2 ó 3% del reactor principal. Este sistema se emplea en una planta piloto con un volumen de 2,7 m3localizado en una industria farmacéutica en Hungría.
  • El Grupo de Ingeniería Ambiental y Bioprocesos de la Universidad de Santiago de Compostela tiene en marcha desde inicios del 2008 una planta piloto de 100 L para la investigación de la granulación aerobia.

Los estudios de viabilidad muestran que la tecnología de lodos granulares aerobios puede ser muy prometedora (de Bruin et al., 2004[12] ). Basándose en el coste anual de un reactor granular (GSBR) con pre-tratamiento y un GSBR con post-tratamiento, estos sistemas son más viables en un 6-16% Un análisis de sensibilidad muestra que la tecnología de lodos granulares es menos sensible al precio del suelo, y más sensible a los flujos de aguas pluviales. Debido a la alta carga volumétrica que se puede tratar en un GSBR, la superficie necesaria es de sólo un 25% comparada con los sistemas tradicionales de referencia. Sin embargo, los sistemas GSBR solamente con tratamiento primario no pueden alcanzar los actuales estándares de depuración de aguas residuales urbanas, principalmente debido al exceso de sólidos en suspensión en el efluente que supera los valores límite de emisión. Estos sólidos provienen del lavado de la biomasa no fácilmente sedimentable.

Referencias

  1. de Kreuk M.K., McSwain B.S., Bathe S., Tay S.T.L., Schwarzenbeck and Wilderer P.A. (2005). Discussion outcomes. Ede. In: Aerobic Granular Sludge. Water and Environmental Management Series. IWA Publishing. Munich, pp.165-169)
  2. Beun J.J., Hendriks A., Van Loosdrecht M.C.M., Morgenroth E., Wilderer P.A. and Heijnen J.J. (1999). Aerobic granulation in a sequencing batch reactor. Water Research, Vol. 33, No. 10, pp. 2283-2290.
  3. Qin L. Liu Y. and Tay J-H (2004). Effect of settling time on aerobic granulation in sequencing batch reactor. Biochemical Engineering Journal, Vol. 21, No. 1, pp. 47-52.
  4. Tay J.-H., Liu Q.-S. and Liu Y. (2001). The effects of shear force on the formation, structure and metabolism of aerobic granules. Applied Microbiology and Biotechnology, Vol. 57, Nos. 1-2, pp. 227-233.
  5. Beun J.J., Hendriks A., Van Loosdrecht M.C.M., Morgenroth E., Wilderer P.A. and Heijnen J.J. (1999). Aerobic granulation in a sequencing batch reactor. Water Research, Vol. 33, No. 10, pp. 2283-2290.
  6. de Kreuk, M.K., Bruin L.M.M. and van Loosdrecht M.C.M. (2004). Aerobic granular sludge: From idea to pilot plant. In Wilderer, P.A. (Ed.), Granules 2004. IWA workshop Aerobic Granular Sludge, Technical University of Munich, 26-28 September 2004 (pp. 1-12). London: IWA.
  7. Arrojo B., Mosquera-Corral A., Garrido J.M. and Méndez R. (2004) Aerobic granulation with industrial wastewater in sequencing batch reactors. Water Research, Vol. 38, Nos. 14-15, pp. 3389 – 3399
  8. Cassidy D.P. and Belia E. (2005). Nitrogen and phosphorus removal from an abattoir wastewater in a SBR with aerobic granular sludge. Water Research, Vol. 39, No. 19, pp. 4817-4823.
  9. Schwarzenbeck N., Erley R. and Wilderer P.A. (2004). Aerobic granular sludge in an SBR-system treating wastewater rich in particulate matter. Water Science and Technology, Vol. 49, Nos. 11-12, pp. 41-46.
  10. Inizan M., Freval A., Cigana J. and Meinhold J. (2005). Aerobic granulation in a sequencing batch reactor (SBR) for industrial wastewater treatment. Water Science and Technology, Vol. 52, Nos. 10-11, pp. 335-343.
  11. Tsuneda S., Ogiwara M., Ejiri Y. and Hirata A. (2006). High-rate nitrification using aerobic granular sludge. Water Science and Technology, 53 (3), 147-154.
  12. de Bruin L.M.M., de Kreuk M.K., van der Roest H.F.R., Uijterlinde C. and van Loosdrecht M.C.M. (2004). Aerobic granular sludge technology: and alternative to activated sludge. Water Science and Technology, Vol. 49, Nos. 11-12, pp. 1–7)

Links

  • USC Universidad de Santiago de Compostela. (Biogrup)
  • DHV Water -
  • TUDELF - Universidad de Delf
  • STW Dutch Foundation for Applied Technology
  • STOWA Dutch Foundation for Applied Water Research
  • NEREDA
  • IRSA Istituto di Ricerca Sulle Acque
  • ARGUS